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We prove necessary and sufficient conditions for linear operators to approximate
and interpolate unbounded continuous functions on certain subsets U <:;; ( - 00, 00).

The main application of our general theory is to simultaneous asymptotic
approximation and interpolation by function series. Special cases of our results are
a sharpened version of a theorem of Eidelheit for the solubility of infinite systems
of linear equations and a generalization of a theorem of Carleman concerning the
asymptotic approximation and interpolation of continuous functions by entire
functions on the real axis. Moreover we can apply our general theorems to a
moment problem of P6lya and to asymptotic approximation and interpolation by
Dirichlet series. Our general approach to such problems is based on the use of
certain complete approximation systems and on an essential identity theorem of
functional analysis concerning approximations in normed linear spaces with certain
additional restrictions by seminorms. '© 1992 Academic Press, Inc.

1. INTRODUCTION

In this paper we give an account of a more general theory concerning the
simultaneous asymptotic approximation and interpolation of unbounded
continuous functions by linear operators.

Let X always denote a linear space. For our applications especially we
choose X to be one of certain sequence spaces or function spaces. Let C( V)
denote the class of all complex-valued and continuous functions f on sub
sets Us; ( - 00, 00). For each s E V let F, be a linear operator from X into
the set of complex numbers such that

F,(ax + [3y) = aF,(x) + [3F,(y) (x, Y E X; a, [3 complex; S E V).

The system (V, X, F s ) is said to have the asymptotic approximation
property (A) if for every f, hE C( V), h(s) > 0 (s E V) there exists an element
x E X such that

If(s)-Fs(x)1 <h(s)
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(s E V). (1)
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Replacing (1) by the inequality

155

If(s) - Fs(x)j < f. (SE U)

for any assigned f. > 0 we define the property (A). Furthermore, the system
(U, X, Fs ) has the simultaneous approximation and interpolation property
(A, I) if for every f, hE C( U), h(s) > 0 (s E U), and for every sequence (qv)
of distinct qv E U (v = 1, 2, ... ), where each compact subset of U only
contains a finite number of these qv, there is an element XE X satisfying

If(s)-Fs(x)1 <h(s) (SE U) and Fq,(x) =f(qv) (v = 1,2, ... ).

The main result of this paper is the proof of necessary and sufficient
conditions for our systems (U, X, F s ) to possess the properties (A), (A),
(A, I) respectively.

Our main application is to the asymptotic approximation and inter
polation of unbounded continuous functions by function series on the set
U if we choose

OCJ

Fs(x)= L akKk(s)
k=l

with given functions K k E C( U) (k = 1, 2, ... ), where X is the linear space of
certain sequences x = (ak) of the coefficients ak' A special case of this
application is a proof of a sharpened version of a theorem of Eidelheit
[2, p. 145] concerning the solubility of infinite systems of linear equations
if we choose U to contain only isolated points 1; E(- 00,00) (i = 1, 2, ... ).
We also deduce from our general result for function series a generalization
of a theorem of Carleman concerning the asymptotic approximation and
interpolation of continuous functions on the real axis by entire functions if
U = (- 00, 00). Applying our results in the case Kk(s) =SAk with given
exponents Ak ~ 0 (k = 0, 1, 2, ... ) we obtain necessary and sufficient condi
tions for the asymptotic approximation and interpolation by Dirichlet
series on [0, 1) or on [0, 00). This extends the well known approximation
by Muntz polynomials. Finally, we strengthen a result of P6lya concerning
a moment problem if we choose X to be a class of certain entire functions.

Our general theory is based on a definition of complete approximation
systems (U, X, Fs ) with respect to a sequence (Pn) of given seminorms Pn
on X. We might mention that these complete systems are quite different
from the rather complicated (locally convex) F-spaces, which are used in
[2; 6, I, p.208, and II, p. 127; 9] to prove the theorem of Eidelheit. Of
course in various areas of analysis F-spaces are of greater importance for
problems of sequence spaces. But by their simpler "topological nature" our
complete systems are more convenient especially for applications to



156 LOTHAR HOISCHEN

problems of simultaneous approximation and interpolation. All of our
proofs are based on only one essential identity theorem of functional
analysis concerning a relationship between approximations in normed
linear spaces that have certain additional restrictions by seminorms and
corresponding identity properties of bounded linear functionals on these
spaces. This theorem is a consequence of the Hahn-Banach theorem and
enables us to simplify our proofs such that we do not need inverse
procedures such as [2, p. 140; 6].

2. SPECIAL RESULTS

To motivate our more abstract methods, definitions, and theorems we
first consider the following three special results from different parts of the
theory of approximation and interpolation. These are special problems of
sequence spaces and function spaces X. Then our general theory enables us
to obtain improvements of these theorems as applications of a systematic
whole.

First, we say that an infinite matrix (aid (a ik complex; i, k = 1, 2, ) has
the property (E) if for arbitrarily given complex numbers Ci (i= 1, 2, ) the
infinite system of linear equations

00

L aikxk= C j

k=l

(i = 1, 2, ... )

has a solution x = (xk) (Xk complex) such that I:%"'= 1 laikXkl < 00

(i = 1, 2, ... ). The problem to determine necessary and sufficient conditions
for a matrix (aid to satisfy (E) was first completely solved by the following
theorem of Eidelheit [2, p. 145], where the proof of [2] is based on the
theory of (locally convex) F-spaces combined with a complicated inverse
operation [2, Theorem 1, p. 140].

THEOREM 1. A matrix (aid (i, k = 1, 2, ... ) has the property (E) if and
only if the following conditions (L) and (N) are satisfied:

(L) L~=l Avavk=O (k= 1, 2, ... ) implies Av=O (v= 1, ..., i) for each
i = 1, 2, ...; Le., the rows of the matrix are linearly independent;

(N) for each n = 1, 2, ... there is an integer in> n such that for all
i ~ in the inequality II:~ = 1 Avavkl ~ M l:~ = 1 lavkl (k = 1, 2, ... ) implies Av= 0
(in ~ V ~ i), where M is independent ofk.

For generalizations see also [2, p. 143; 6, II, p. 125; 9]. Moreover we say
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that a matrix (aik) has the property (E) if, given complex numbers Ci

(i = 1, 2, ... ) and 8> 0, we can find x = (xd satisfying

Ic i - I aikxkl <8
k~l

and
00

L laikXkl<oo (i=1,2, ... ).
k~l

Applying our general theorems we obtain a new and simplified proof of the
theorem of Eidelheit and a stronger result by

and(i = 1, ..., I)

THEOREM 2. A matrix (aik) (i, k = 1, 2, ... ) has the property (E) if and
only if (aid has the property (E), and each of these properties is equivalent
to each of the two statements (a), (b):

(a) (L) and (N) are satisfied;

(b) (L) and the following property are satisfied: for each n = 1, 2, ...
there is an integer in> n such that, given any complex numbers C i (i = 1, ... , I),
r~ in with Ci = ° (1 ~ i < in) and 8> 0, we can find complex numbers Xk
(k = 1, ..., m) satisfying

Ic i - f aikxkl<c
k~l

m

L laikXkl <8
k=l

(i = 1, ..., n).

Concerning the second special result a theorem of Carleman [1, 3]
asserts that for every f, hE C( - 00, (0), h(s) > 0, there exists an entire
function g such that

If(s) - g(s)1 < h(s) ( - 00 < s < 00 ).

To extend this result we say that a sequence (mk) of integers mk~°
(k = 0, 1,2, ... ) has the property (A) if for every f, hE C( - 00,(0), h(s) > 0,
we can find an entire function g with g(s) = Lr~o aksmk such that

If(s) - g(s)1 < h(s) ( - 00 < s < 00 ). (2)

Moreover, if for any numbers qiE(-oo,oo) (i=1,2, ... ), Iqil~oo

(i ~ (0) we can choose g(s) = Lr~o aksmk to satisfy, in addition to (2), the
equations

g(qJ=f(qJ (i = 1, 2, ... ),

we say that (md has the approximation and interpolation property (A, I).
To improve the theorem of Carleman we deduce from our general
theorems
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THEOREM 3. A sequence (mk) of integers mk> 0 = mo< mk < mk+ 1

(k = 1, 2, ... ) has the property (A) if and only if (md has the property (A, I),
and each of these properties is satisfied if and only if

'\' -I
L, mk = 00

k;>l
mk even

and (3)

Finally, the following result concerning moment problems IS due to
P6lya [10]:

THEOREM 4. For arbitrarily given complex numbers Ci (i=0, 1,2, ... )
there is an entire function g such that

tOO Ig(u)1 US du < 00 (s ~ 0)

and

Strengthening Theorem 4 we shall prove

THEOREM 5. For every J, hE CEO, 00), h(s) > 0 (s ~ 0), qi ~ 0
(i = 1, 2, ... ), q i --+ 00 (i --+ 00) there exists an entire function g such that

and

tOO Ig(u)1 uSdu<oo

k(S)- tOO g(u)USdul <h(s)

(s ~ 0),

(s ~ 0),

(i = 1, 2, ... ).

3. GENERAL THEOREMS

We now generalize Theorem 1 and 2 for our systems (U, X, F s )'

This requires the definition of a suitable completeness of (U, X, Fs ), and
the linear independence of the rows in the conditions (L) and (N) of
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Theorem 1 shall be replaced and generalized by analogous identity
properties concerning Stieltjes integrals to represent the corresponding
linear functionals.

We now assume that U=U~lDi with closed intervals Di=[ai,b;],
-00 <ai~bi< 00 U= 1, 2, ... ). We suppose that the open intervals (ai' b;)
are disjoint. Thus the Di may have common endpoints. The case ai=bi
also is admitted, where in this case we assume that Din D j = 0 (j =P i); i.e.
D i is an isolated point if ai = bi'

If Pn (n = 1, 2, ... ) are seminorms on the linear space X [12, p.24], we
say that the system (U, X, Fs) is complete with respect to (Pn) if
L~l Pi(X;) < 00, XiEX always implies (a) and (f3):

00

(a) L IFs(x;)1 < 00
i~ 1

(s E U), (4)

(f3) there is an element x E X such that
00

Fs(x) = L Fs(x;)
i~l

(s E U). (5)

In the following, for the systems (U, X, Fs)' we always assume that F.(x)
presents a continuous function on U concerning s for each fixed x E X.

We set Bn = U7= 1 D i (n = 1, 2, ... ). Generalizing condition (L) of
Theorem 1 we say that the system (U, X, F s ) has the identity property (W)
if for each fixed n = 1, 2, ... ,

f Ft(x)da(t)=O (XEX),
Bn

f Ida(t)1 < 00
Bn

imply a(t) = 0 (t E Bn ) for a normalized function a on Bn . If Bn = U7~ 1 D i =
U7=1 Aj with disjoint closed intervals Aj = [cj' dj ], cj~dj' then the nor
malization of a means that a( t) = 2~ 1 [a( t + 0) + a( t - 0)] for all inner
points of Bn , and that a(te)=O for an endpoint te of Aj in the case cj<dj.
Here we have JAFt(x) da(t) = AFe/x) with some constant A if cj = dj , and
the conclusion ot (W), that a(t) = 0 on Aj , in this case means A= O.

Our condition (W) is the linear independence of the operators Ft; on X
if U only contains isolated points t i U= 1, 2, ... ), and this is the first
condition in the more general theorem of Eidelheit [2, p. 143].

To generalize (N) of Theorem 1 we say that the system (U, X, F.) has the
property (M) with respect to a sequence (Pn) of seminorms Pn on X if for
each n there is an integer in> n such that for all i~ in the condition

f Ida(t)1 < 00
B;

(6)
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implies lX(t) = 0 on all D,. (in ~ V~ i) for a normalized IX on B, = U~ ~ I D,o,
where M is independent of x.

Finally, we say that (U, X, F,.) has the property (A p•m. j ) concerning a
seminorm p on X for positive integers m, j with 1 < m ~j if for each
fE C(Bj ) with f(s) = 0 (s E Bm _ I)' and for any f, > 0, there exists an element
x E X such that

If(s) - F,(x)1 < f. (s E Bj ) and p(x) < E. (7)

Moreover, if we can choose x E X to satisfy, in addition to (7), the
equations Fq,(x)=f(q,) (v=I, ...,N) for arbitrarily given numbers q,.EBj

(v = I, ..., N) we say that (U, X, F,) has the property (A~.m.) concerning p
for the integers m,j.

We now state our main result:

THEOREM 6. Suppose that the system (U, X, F,) is complete with
respect to the sequence of seminorms p" (n = I, 2, ... ) on X. Then the
properties (A), (A), (A, I) are equivalent, and each of these properties is
equivalent to each of the following statements (a), (b), (c):

(a) (W) and (M) are satisfied;

(b) (W) and the following property are satisfied: for each n = 1,2, ...
there exists an integer in> n such that (A p•• i•. i) is valid for all i ~ in;

(c) (W) and the following property are satisfied: for each n = I, 2, ...
there exists an integer i,,>n such that (A~•. i•. ;) is validfor all i~i".

The main application of Theorem 6 is to asymptotic approximation and
interpolation by function series, and we use in this special case the following
notations: If K = (Kk) is a sequence of functions Kk (k = I, 2, ... ) on
U = U::" I Di' we define X = L K to be the set of all sequences x = (ad
(ak complex) such that L:;:~ I lakKds)1 is bounded on each D;, and such
that L:%"~ 1 ak Kk(s) converges uniformly on each D i (i = I, 2, ... ). We take

oc

Fs(x) = L akKds)
k ~ 1

and the seminorms

'"
Pn(x) = sup L lakKds)1

!.e Bit k = 1

(8)
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Then the system (U, L K , Fs ) is complete with respect to (Pn)' For

00 00 00

L Pi(X;) = L sup L la~)Kk(s)1 < 00,
i = 1 i = 1 S E Bi k = 1

implies that L:;: 1 Ian < 00 if K k (s),6 0 for at least one s E U. Hence,
taking ak = L:;: 1 a~) in this case, and ak = 0 if Kk(s) = 0 for all s E U, it
follows by a simple computation that x = (a k ) ELK' where (4) and (5) are
satisfied.

We deduce from Theorem 6

THEOREM 7. If K = (Kd, Kk E C( U) (k = 1, 2, ... ), then, for the system
(U, L K , Fs ) with

00

F,(x) = L akKk(s)
k~l

the properties (A), (A), (A, I) are equivalent, and each of these properties is
equivalent to each of the statements (a), (b):

(a) the following conditions (WK) and (M K) are satisfied:

(WK)

f Kdt) dlX(t) = 0 (k = 1, 2, ... ),
B n

f IdlX(t)l<oo
Bn

(9)

imply lX(t) = 0 (t E Bn) for a normalized IX on Bnfor each n = 1, 2, ... ;

(M K ) for each n = 1, 2, ... there exists an integer in> n such that for
all i"~ in

(ak complex; m = 1, 2, ... ), f .IdlX(t)1 < 00
B,

(10)

imply lX(t) = 0 on all D v (in ~ V~ i) for a normalized IX on B;.
Furthermore, if for each n = 1, 2,... there is some Sn E Bn satisfying

maxsEBn IKds)1 = IKdsn)1 for all k= 1, 2, ..., then (M K ) is equivalent to the
condition
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(M~) for each n= 1, 2, ... there is an integer i,,>n such that for
all i ~ i"

f IdlX(t)I<CfJ (11)
B,

imply IX( t) = 0 on all D I' (i" ~ V ~ i) for a normalized IX on B;.

(b) (W K) and the following property are satisfied: for each n = 1, 2, ...
there is an integer i,,>n such that for anyfEC(B;) (i~i,,) withf(s)=O
(s E B;n I), and any r. > 0 there is P(s) = L:Z'~ I ak Kk(s) satisfying

If(s)-P(s)l<e (sEB;) and
m

L lakKk(s)1 <e (sEB,,).
k~1

(k = 1,2, ... ).

Theorem 7, which generalizes results of [5, 7], is an immediate
consequence of Theorem 6, since JBnL:f= I akKdt) dlX(t) = 0 ((ak)ELK) is
equivalent to (9), and IJB,L::~l akKdt)dlX(t)1 ~MsuPSEBnL::~llakKk(S)1

((ak) ELK) is equivalent to (10) by reason of the uniform convergence of
L:;:'=lakKk(S) ((ak)EL K) on all B;. Furthermore the equivalence of the
conditions (b) of Theorem 6 and Theorem 7 in the case X = L K is obvious.

To deduce Theorem 2, and in particular the theorem of Eidelheit from
Theorem 7 we set D;=[a;,b;], where a;=b;=t; U=I,2, ... ) with ti#tj

(i#j), and Kdt;)=a;k (i,k=I,2, ... ). Then JD,Kdt)dlX(t)=,A.;a;k with
some constant Ai' and therefore (L) and (W K) are equivalent. Taking a; = 0
(i#k), ak = 1 (k = 1, 2, ... ) it follows from (10) that

Ivt i'VaVkl ~M I~~:" la,'kl ~M I,t lavkl

On the other hand IL::.~ 1 )".a,'kl ~ M L:~ = 1 la"kl implies

Ikt ak I,t )",a Vk ! ~M "~I k~l lakavkl ~nM I~~:" kt lakavkl

for all ak; i.e., the inequality (10) with the constant nM. Thus (N) and
(M K ) are equivalent for (aik)' where the equivalence of the conditions (b)
of Theorem 2 and Theorem 7 in this case is obvious. This proves
Theorem 2.

4. ApPLICAnONS TO DIRICHLET SERIES

If Kk(s) = S;·4 on U = [0, 1) or on U = [0, CfJ), Theorem 7 has
applications to asymptotic approximation and interpolation by Dirichlet
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series. Referring to this we say that a sequence (}.d of exponents Ak ~ 0
(k = 0, 1,2, ... ) has the property (M d ) with respect to a number dE (0, I] if

r t)·' da(t) = (!;(q;"d)") (k --+ x),
o

.1t Id:x(t)1 < x

imply a(t) = 0 on (q, I] for each q E (0, I), where :x is normalized. It is
obvious that (Md implies (M d ) for dE(O, I), and (Me) follows from (M d )

for O<c<d~ 1.
The following result, which also is used in the proofs of Theorem 3 and

Theorem 5, is due to [8].

THEOREM 8. If i'k~ 0, }'k+ I - Ak ~ C > 0 (k = 0,1,2, ... ), and r,:~ I }.;I

= x, then (i.d has the property (M d.

An alternative proof of Theorem 8 is given in [4, Corollary of
Theorem 3]. Concerning Dirichlet series we say that (A k ) has the property
(A ro.1) if for every f, hE qo, 1), h(s) > 0 (s E [0, I», there is an absolutely
converging series g(s) = r,;= 0 aks" (s E [0, 1» such that

If(s) - g(s)1 < h(s) (SE [0, I)),

where we use corresponding definitions for (Aro.I)' I), (A ro.oo )' (A ro."",), I),
respectively.

Without proof we state the following result, which can be deduced from
Theorem 7.

THEOREM 9. A sequence (Ad, 0 = ).0 < Ak (k = 1,2, ... ) has the property
(A ro. I » if and only if (Ak) has the property (A ro.1), 1), and if and only if
(M d is satisfied. A sequence (Ad, 0 = Ao < Ak (k = I, 2, ... ) has the property
(A ro. x » if and only if (}'k) has the property (A ro.x )' I), and if and only if
(M d ) is satisfied for some dE (0, 1].

Concerning (A ro. I » and (A ro.oo » Theorem 9 was proved first in [4,5],
and the part for simultaneous approximation and interpolation is due to
Metz [7].

5. PROOFS OF THEOREM 3 AND THEOREM 5

The deduction of these theorems from Theorem 6 and 7 is based on
Theorem 8.

Proof of Theorem 3. We first assume (3). Taking Kk(s)=sm'-l
(k=1,2, ... ), D2v t=[v-l,v], D2v =[-v, -v+l] (v=I,2, ... ), and so
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B2i = [-i, i] (i= 1, 2, ... ), B2i + 1 = [-i, i+ 1] (i=0, 1,2, ... ), u= (-00,00),
we have

f tmk da(t) = ftmk[da(t) + ek da( - t)]
Bli 0

f tmkda(t) = f tmk[da(t)+ek da( -t)]
B2i+l 0

(i= 1, 2, ... ), (12)

(i = 0, 1, 2, ... ), (13)

where ek = 1 (mk even), ek = -1 (m k odd). Applying Theorem 8 it follows
from (12) and (13) by an easy computation that the conditions (WK) and
(M2) of Theorem 7 are satisfied. Thus we obtain (A, I). Conversely, if (A)
is supposed, we can find for every WE C[O, 1] and s > °an entire g with
g(s) = L;'~o aksmk (- 00 < s < (0) such that in particular g(s) = w(s) + s(s),
g(-s)=w(s)+s(-s) with Is(s)l, Is(-s)l<s for sE[O,I]. Taking
b(s)=2- 1 [g(s)+g( -s)] we have

b(s) = L akSmk = w(s) +2- 1[s(s) + s( -s)],
k;.O

mk even

Iw(s)-b(s)1 <s (sE[O,I]). (14 )

Since the series of b(s) converges uniformly on [0, 1] we can replace
b(s) in (14) by a polynomial LO,,;k";N.mkeven akSmk. Thus we obtain
Lk;'l.mkevenm,;l=oo by the theorem of Muntz [11, p.336]. A similar
argument proves Lk;.l, mk odd m,; 1 = 00, which completes the proof of
Theorem 3.

Proof of Theorem 5. We deduce Theorem 5 from Theorem 6 by
choosing X = G to be the class of all entire functions g such that
J~ Ig(u)I US du < 00 (s ~°). We set F s ( g) =J~ g(u)US du (g E G), Pn(g) =
J~ Ig(u)1 un du + maxlzi ~n Ig(z)1 (n = 1,2, ... ; z complex), and D i =
[i-I, i], Bi = [0, i] (i= 1, 2, ... ), U= [0, 00). Then the completeness of
the system (U, G, F s ) follows at once. We take, in particular, gk E G with
gk(u)=uke- u (k=O, 1,2, ... ), and verify (W) and (M) of Theorem 6 by
proving (15) and (y):

(15 )

J: (' gdu)u' du da(t) = J: r(k + t + 1) da(t) =°
(k=O, 1,2, ... ), r Ida(t)1 < 00

o
(15)
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imply O((t) = 0 on [0, n] for each n = 1, 2, ... ;

(y)

1t T(k + t + 1) dO((t)! :::; Mpn(gk) = M[T(k + n + 1) + ennk]

(k=O, 1,2, ... ),

f~ IdO((t)1 < 00

(16)

imply O((t)=O on (n, i] for all i>n; n= 1, 2, ..., where 0( is normalized.

By Stirling's formula

log T(y) = (y- 2- 1
) logy- y + log Jbr+ lD(y-l) (y -+ 00)

a simple calculation gives

T(k+ t+ 1)=T(k+ 1) e'IOgk[1 +rk(t)],

and

(17)

(tE[O,n];k=O, 1,2, ... ), (18)

where the constant bn only depends on n. Hence (15), (17), and (18) imply

re,logkdO((t)= _fn e,logkrk(t)dO((t)
o 0

= lD(e(n-I)logk)

and so, by taking k = 2V,

re'Y log 2 dO((t) = lD(e(n - I)Y log 2)

(k -+ 00)

(v -+ 00). (,19)

Hence, using a simple substitution, it follows from Theorem 8 that 0((1) = 0
on (n - 1, n]. Repeating this argument n times we obtain 0(( t) = 0 on (0, n],
and so O((t)=O on [0, n] by (15), since T(I):;i:O and 0( is normalized. This
is (<5). To prove (y), we conclude from (16), (17), and (18) that

t etlogk drx(t) = - t e'logkrdt)dO((t)

+ lD(T(k + n + 1)[T(k + 1)] -I) + lD(nk[T(k + 1)] -I)

= lD(eU- 1) logk) + lD(en log k) + lD(l)

(k -+ 00 ),
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which, by Theorem 8, implies a(t) =0 on (i -1, i]. Hence, repeating this
argument, we obtain a(t) = 0 on (n, i]. This completes the proof of
Theorem 5.

6. AN IDENTITY THEOREM OF FUNCTIONAL ANALYSIS

Next, we prove an identity theorem of functional analysis which will play
an essential part in the proof of our main Theorem 6.

THEOREM 10. Suppose that X is a linear space with a seminorm p on X,
and that A is a linear mapping from X into the normed linear space Y with
a norm II y II for y E Y. If G ~ Y, then, in order that for every y E G and e > 0
there exist an element x E X satisfying

IIY-A(x)11 <e and p(x) < e, (20)

the condition IG(X, Y, A, p) is necessary and sufficient, where IG(X, Y, A, p)
denotes the identity property that

IF(A(x))1 ~ Mp(x) (XE X),

for a bounded linear functional F on Y, always implies F(y) = 0 (y E G).

Proof of Theorem 10. We assume first IG(X, Y, A, p). Let XjN denote
the quotient space of all sets n(x) = {x + t : tEN} (x E X), where
N= {XEX:p(X)=O}. Then XjN is a normed linear space with the norm
p by taking p(n(x))=p(x) (XEX) [12, p.31]. If T is the space of all
ordered pairs w = (y, n(x)) (y E Y, X E X), then

Ilwll = II(y, n(x))11 = Ilyll +p(x) (21 )

defines a norm on the linear space T. Let (Yo, xo) denote the null element
of T, where Yo, Xo are the null elements of Yand XjN respectively. The set
V of all pairs (A (x), n(x)) (XEX) is a linear subspace of T. Suppose that
F is a bounded linear functional on T satisfying F( w) =0 (w E V). Then, to
prove (20), it is enough to show F(y, xo)=O (YEG) [11, p. 114]. We have

F(y, n(x)) = F(y, xo) + F(yo, n(x)) (YE Y, XEX), (22)

where F(y, x o), F(yo, n(x)) define bounded linear functionals on Y and
XjN, respectively. Thus F(A(x),n(x))=O (XEX) and (22) imply
F(A(x), x o)= -F(yo, n(x)) (x E X), and therefore, it follows from (21) that
IF(A(x), xo)1 = IF(yo, n(x))1 ~ IIFII p(x) (x E X), where IIFII denotes the
norm of the functional F. Hence we obtain F(y, xo) = 0 (y E G) by
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IG(X, Y, A, p). Conversely, we assume that (20) can be satisfied for any
y E G and I> > 0, and assume that

IF(A(x))1 :::; Mp(x) (XEX) (23)

for a bounded linear functional F on Y. Hence, if F( b) "# 0 for some bEG,
we can find X k E X (k = 1, 2, ... ) such that

and

(k ---+ <Xi) (24)

(k ---+ <Xi). (25)

Thus (23) and (25) imply IF(A(Xk))I:::; Mp(Xk) ---+ 0 (k ---+ <Xi) in contradic
tion to (24). This completes the proof of Theorem 10.

7. THE PROOF OF THEOREM 6

We state the following

LEMMA. (a) The condition (W) of a system (X, U, Fs) is equivalent to
the following property: For each fE C(Bn), Bn= U7~ 1 D; (n = 1, 2, ... ), each
1»0, and for arbitrary numbers qvEBn (v= 1, ..., N) there is an element
x E X such that

If(s)-Fs(x)1 <I> (sEBn) and Fq,(x) = f(qv) (v = 1, ..., N).

(b) The conditions (Ap,m,j) and (A~,m) concerning a seminorm pare
equivalent for all integers m, j with 1< m :::;j.

Proof We first prove (b), Obviously (A~,m,j) implies (Ap,m,j), and we
now assume (Ap,m,j) for fixed integers 1 < m :::;j. Suppose that fE C(Bj)
withf(s)=O (sEBm_d, and that 1»0. To prove (A~,m,) we have to show
by induction on N that for any different numbers qv E Bj (v = 1, ..., N) there
is an element x E X satisfying

If(s)-Fs(x)1 <I> (sEBj), p(X) <I>, and Fq,(x) =f(qv)

(v = 1, ..., N). (26)

If N=l, then by (Ap,m,j) we find X1EX such that If(s)-F.(xd/<I>
(s E Bj ) and p(Xl) < 1>, and in particular

(27)
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where we may assume 8 < If(qdl iff(qd #0. If dl =0, then our conclusion
is trivially true for N = 1. Suppose therefore that d l # 0. Then
Fq,(xd=f(ql)+dt#O, which follows from dl#O in the casef(qd=O,
and which is a consequence of Idd <C:< If(qZ)I if f(qd#O. We choose
8 1 > °satisfying

and

and by (Ap,m,j) we can find X 2 E X such that

(28)

and (29)

and therefore

(30)

and therefore, it follows from (27)-(31) that

If(s) - F.(x)[ ~ If(s) - Fs(x 2 )1

+c:1IFq,(xdl-1IFs(xdl <c: (sEBj ),

p(x) ~P(X2)+ IbIi IFqt(xz)l- l p(xd < e,

and

(31 )

which proves (b) for N = 1. We now assume that our conclusion (26) is
true for N. If f(qJ =°for at least one of the given numbers qv E Bj

(v = 1, ..., N + 1), then we choose the denotation of qv such that f( qv) =°if
and only if 1~ v~ no ~ N + 1. By (26) we determine Xl E X satisfying

and

p(xd<e,

(32)

Fq,(xz) = f(qv) (v = 1, ..., N),
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and therefore

(33)

Obviously (26) is satisfied for N + 1 if d l = 0, and we suppose d l =I- O. Next,
we show that there is an element X oE X such that

Fq,(xo) = 0 (v = 1, ..., N), and (34)

If f(qN+ d = 0, and so f(qv) = 0 (v = 1, ..., N) by our denotation of the qV'
we obtain (34) immediately from (32) and (33) by taking XO=XI , where
FqN+1(xo) = dl =I- O. But in the case f(qN+ I) =I- 0 we can find XoE X to satisfy
(34) by applying our assumption (26) for N to a function WE C(Bj ), which
is chosen such that w(s)=O (sEBm_d, w(qv)=O (v=I, ...,N), and
w(qN+d=f(qN+d=l-O. If

and (35)

there is by (26) an element X2 E X such that

and (36)

and in particular

FqN + 1(X 2 ) = f(q N + d +bl>

Taking x=x2-bl[FqN+l(XO)]-IXO' and so

Fs(x) = F,.(x2) - bl [FqN+
1
(xo)] -I F.(xo),

it follows from (34)-(38) that

(37)

(38)

If(s) - Fs(x)1 ~ If(s) - F,.(X2) 1

+ el IFqN + I (XO)I-I /F'(Xo)I < e (s EBj ),

p(x) ~P(X2)+ Ibll IFqN + I (XO)I-I p(xo) < e,

and finally Fq, (x) = f(qJ (v = 1, ..., N + 1). This completes the proof of (b).
It remains to prove (a). By a well known result [11, p. 114], the condition

640/71/2-4
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(W) is equivalent to the property that for each fE C(Bn ) and each 6>0
there is x E X such that

If(s) - FAx)1 < 6 (39)

The proof, by induction on N, that we can choose x E X to satisfy, in
addition to (39), the equations Fq,(x) = f(q.) (v = 1, ..., N) is a simple
variant of the proof of (b). Our lemma is thus established.

Proof of Theorem 6. Obviously (A, I) implies (A), and (A) is a conse
quence of (A). We suppose first (A), and prove (W) and (M). It follows
immediately from (A) that we have If(s)-F'(x)1 <6 (sEBn) for each
n = 1, 2, ..., each f E C(Bn), and any 6 > 0 by choosing an appropriate x E X.
Thus we obtain (W) [11, p. 114].

We now assume that (M) is not satisfied. Then by (6) we can find an
integer n~1 and increasing integers i[ with n<i[<i[+l (/=1,2, ... ) such
that there are normalized functions rx[ on Bil + 1 = U~:\ Dv and closed
intervals E[ s U~:\I D v satisfying the conditions

It'l+IF/(x) drx[(t) I :<::;, M[ Pn(x) (x EX),

f Idrx[(t)1 < 00 (/ = 1, 2, ... ),
B;/+l

where the constants M[ are independent of x, and

(40)

(l = 1, 2, ... ). (41)

Moreover we can choose these i[ and E[ with E[+ 1 n Bil + 1 =0 (/ = 1, 2, ... ).
Thus the sets E[ (/ = 1, 2, ... ) are disjoint, and

(j ~ 1+ 1; 1= 1, 2, ... ). (42)

Multiplying (40) by constants we may assume that

(XEX; 1= 1, 2, ... ) (43)

and

(/= 1, 2, ... ). (44)
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(/ = 2, 3, ... ), (45)

Proceeding successively, by (41) we can find functions W/E C(U)
(/ = 1, 2, ... ) such that

Itil+ I w/(t) dalt) I> I + :~: til+ I IWv(t)! Ida/(t)1

if we construct W/ with respect to the properties of the intervals D; as
follows: We choose w/(t) to be suitable large constants on each of the
disjoint E/, and we set w/(t)=O on all Di with E/nD;=0. Thus by (42),
in particular

(tEB;I+I;j~/+1; 1= 1, 2, ... ). (46)

If E/nD i -:f::0, and E/=[c/,d/]-:f::D;, i.e., [c/-e,c/]~Di or [d/,d/+e]
~D; for some 8>0, then we set w/(t)=O (t~c/-e) or w/(t)=O
(t~d/+e), and choose w/ to be linear on [c/-e, c/] or edt, d/+e].

Since J~;=~ Ida(t)l, J~:~ Ida(t)1 -+ 0 (e -+ +0), if a is of bounded varia
tion, we obtain (45) for sufficiently small e. Let

00

j(t) = I wj(t)
j=1

(t E U). (47)

(49)(/ = 2,3, ... ).

Then, by (46), the series (47) converges absolutely and uniformly on each
B i (i= 1, 2, ... ). This impliesjEC(U). Hence, by (45), (46), and (47)

Itil + I j(t) da/(t) I= IsBil+l jtl wj(t) da/(t) I

~ Itil + I w/(t) da/(t) I
/-1-If Iwj(t)llda/(t)I>1 (/=2,3,... ). (48)
j= I Bil+l

By (A) there is X oE X satisfying Ij(t) - F,(xo)1 < 1 (t E U). Thus it follows
from (44) and (48) that

Itil + 1 F,(xo) da/(t) I> 1-1

On the other hand, by (43), we have

(/= 1, 2, ... ),

which contradicts (49). This proves (M).
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We now assume (W) and (M). Taking X with the seminorm p(x) = Pn(x)
for each n, Y=C(B;) (i~in) with the norm Ilfll =max'EB; If(t)1 for fE Y,
A(x) = F,(x) (x EX), and G,;; Y to be the class of allfE C(B;) withf(t) =°
(tEBin-d, it follows from Theorem (10), by the Riesz representation
theorem [11, p. 139], that (M) is equivalent to the existence of an integer
in>n for each n satisfying (A p i ;) for all i~in' Our above lemma, (b),
asserts that (Apn , in,;) is equivale~t nto (A~n, in, J Thus the statements (a), (b),
and (c) of Theorem 6 are equivalent. It remains to prove (A, I). In par
ticular it follows from (M) that for each n = 1, 2, .., there is an in> n with
in + I > in such that (A~n, in, in+I _ d is satisfied, Suppose f, hE C( U), h(s) >°
(SEU), U=U;':IDi' qvEU (v=I,2, ... ), where each Di only contains a
finite number of these qv' Let

i= in

in+l- 1

en=minh(s»O, Vn= U Di,
SE Vn

We may assume that

(n=O, 1,2, ... ).

(n=O, 1,2, ... ).

(50)

Next, we successively determine elements X n EX (n = 1, 2, ... ) as follows: By
(W) and our lemma, (a), we choose XI EX such that

and

(51 )

Fs(xd =f(s) for all S = qv E Va and for all
frontier points S of Vo.

Suppose Xi EX (i = 1, ..., n - 1) have already been determined with the
property that

n-I

L Fs(x;) =f(s)
i~1

for all S = qv EBin-I and for all
frontier points s of Bin - 1 • (52)

Then we set h(s)=O (sEBin _ 1), h(s)=f(s)-'L7::11Fs(x;) (SE Vn). Thus
hE C(Bin +l - d, and by (A~n.in.in+I-I) we can choose X nEX, and so Fs(xn),
to approximate and interpolate h(s) such that

!J(S)-itl Fs(x;) I<2- 'en (SEVn), (53)

IFs(xn)1 <2- 1en (sEB in _ I ), (54)

Pn(xn) < 2 -n, (55)
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and finally,

for all s = q, E Bi. , I _ 1 and for all
frontier points s of B i•• I \. (56)

It follows from (52) and (56) that

n

L Fs(x;) = f(s)
i~ 1

for all s = q, E B i•• 1 _ 1 and for all
frontier points s of B i • • \_ 1 (n = 1,2, ... ), (57)

and, in particular, that

forall q,EB i._ 1 (j~n;n=1,2, ... ). (58)

We set

Xc

g(s) = L Fs(xJ,
i= 1

(59)

By (55) we have L:: 1 Pi (Xi) < 00. Thus, by the completeness of (U, X, F,)
the series (59) converges absolutely on U, and there is an element x E X
such that g(s) = FAx) (s E U).

If s E U, then s E Vn for some n = 0, 1, 2, ..., and therefore it follows from
(50), (51), (53), (54), and (59) that

I/(s) - g(s)1 ~ I/(s) - Itl F,(x i ) I+ i=~+ 1 F\.(x;)1

xc

<2- l en +2- 1 L ei
I=n+ 1

xc

<2- 11: +2- 11: "2 in n L
;::r::.l

which proves (A). Moreover, if q,EBi• -I (n= 1, 2, ... ), we have by (57),
(58), and (59) that

n 00

Fq,(x) = L Fq,(x i )+ L Fq.(x;)=/(q,).
i= 1 ;=n+ 1

This proves (A, I) and completes the proof of Theorem 6.

We might mention that we have proved the necessity of (W) and (M) for
(A) without use of the completeness of the system (U, X, F,).
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